La conjetura mas famosa; Poincaré .

El 17 de julio de 1912, fallecía el matemático, físico, científico teórico y filósofo de la ciencia, Jules Henri Poincaré (Nancy, Francia, 29 de abril de 1854 – París, 17 de julio de 1912).

poincareIngresó en el Polytechnique en 1873, continuó sus estudios en la Escuela de Minas bajo la tutela de C. Hermite, y se doctoró en matemáticas en 1879. Fue nombrado profesor de física matemática en La Sorbona (1881), puesto que mantuvo hasta su muerte. Antes de llegar a los treinta años desarrolló el concepto de funciones automórficas, que usó para resolver ecuaciones diferenciales lineales de segundo orden con coeficientes algebraicos.

En 1895 publicó su Analysis situs, un tratado sistemático sobre topología. En el ámbito de las matemáticas aplicadas estudió numerosos problemas sobre óptica, electricidad, telegrafía, capilaridad, elasticidad, termodinámica, macánica cuántica, teoría de la relatividad y cosmología. Ha sido descrito a menudo como el último universalista de la disciplina matemática.

La conjetura de Poincaré es uno de los problemas  más desafiantes de la topología algebraica, y fue el primero en considerar la posibilidad de caos en un sistema determinista, en su trabajo sobre órbitas planetarias. Este trabajo tuvo poco interés hasta que empezó el estudio moderno de la dinámica caótica en 1963. El teorema sostiene que la esfera tridimensional, también llamada 3-esfera o hiperesfera, es la única variedad compacta tridimensional en la que todo lazo o círculo cerrado (1-esfera) se puede deformar (transformar) en un punto. Este último enunciado es equivalente a decir que sólo hay una variedad cerrada y simplemente conexa de dimensión 3: la esfera tridimensional.

En 1904, el matemático francés Henri Poincaré conjeturó que el resultado obtenido para la esfera n=2 del espacio de dimensión 3 tenía un análogo para la esfera n=3 del espacio de dimensión 4. En otras palabras, en el espacio de dimensión 4, toda variedad de dimensión n=3, cerrada y simplemente conexa, sería homeomorfa a la esfera de dimensión n=3. Pero Poincaré no consiguió probar su conjetura. Tampoco ninguno de sus contemporáneos ni sucesores. Con el tiempo, la conjetura de Poincaré cobró interés hasta convertirse en el problema abierto más notable de la topología geométrica, con destacables implicaciones para la Física. Más aún, llegó a convertirse en uno de los problemas sin resolver más importantes de las matemáticas.
poncairePara dimensión dos ya fue demostrada en el siglo XIX. Para n=5, hubo de esperar hasta 1961, cuando lo hizo Erik Christopher Zeeman. Ese mismo año, Stephen Smale lo consiguió para n igual o mayor que 7 y, en 1962, John R. Stallings para el caso n=6. Los casos n=3 y n=4 se resistían y hubo que esperar a 1986 cuando, en lo que se consideró una hazaña matemática del estadounidense Michael Hartley Freedman, se consiguió demostrar el caso n=4. El problema es que, resuelto con éxito para todas las demás dimensiones, el caso original n=3, planteado por Poincaré, se resistía denodadamente a cualquier demostración matemática. La  hipótesis dejó de ser una conjetura para convertirse en un teorema tras su comprobación en 2003 por el matemático ruso Grigori Perelman.

En 1884, y como parte de los festejos conmemorativos por su sexagésimo cumpleaños a celebrar en 1889, el Rey Óscar II de Suecia y Noruega, instituyó una competencia matemática, probablemente por iniciativa del matemático sueco Mittag-Leffler. La convocatoria del concurso se publicó a mediados de 1885 en las revistas Acta Mathematica (fundada con ayuda del rey por el susodicho Mittag en 1882) y en Nature. Las bases establecían cuatro problemas aunque dejaban abierta la posibilidad de resolver cualquier otro. El primero, propuesto por Karl Weierstrass, es conocido como problema de n cuerpos y está relacionado con determinar la estabilidad del Sistema Solar. En julio de 1887 Poincaré contesta a una carta previa diciendo que se presenta al concurso con dicha cuestión. Como la considera prácticamente irresoluble, trabaja ampliando sus estudios sobre una restricción, el problema de los tres cuerpos. Su memoria, presentada en mayo de 1888, fue tan notable que el jurado decidió declararle ganador, confirmándolo el monarca en enero de 1889, un día antes del aniversario del real nacimiento.

poincare3En el campo de la mecánica elaboró diversos trabajos sobre las teorías de la luz y las ondas electromagnéticas, y desarrolló, junto a Albert Einstein y Hendrik Lorentz, la teoría de la relatividad restringida. Las contribuciones de Poincaré a la teoría de la relatividad son importantes

En 1893, Poincaré ingresó al Bureau des Longitudes de Francia, donde se le encomendó la tarea de la sincronización de los horarios del mundo. En 1897, Poincaré apoyó una iniciativa (finalmente rechazada) de decimalizar la medida circular, y con ello el tiempo y la longitud. Este trabajo le permitió considerar cómo los relojes en reposo en la tierra, que se estarían moviendo a diferentes velocidades relativas al espacio absoluto, podrían ser sincronizado

Poincaré (1900) analizó la «fabulosa invención» del tiempo local de Lorentz (no estaba al tanto de que el concepto lo introdujo en realidad Woldemar Voigt en 1887), y manifestó que el concepto surge cuando se trata de sincronizar dos relojes en movimiento, mediante la emisión de señales luminosas que se supone viajan a la misma velocidad en ambas direcciones en un marco de referencia en movimiento.

Se puede apreciar entonces que Poincaré fue un intérprete constante (y por momentos un crítico constructivo) de la teoría de Lorentz. Poincaré era en esencia un filósofo, interesado en el «significado profundo» de las cosas. De esta forma, llegó a interpretar la teoría de Lorentz en términos del Principio de la Relatividad, y al hacerlo llegó a numerosas conclusiones que hoy están asociadas con la Teoría de la Relatividad Especial.
poincare4En su trabajo de 1900, Poincaré analizó la recarga de un objeto físico cuando emite un flujo de radiación en una dirección dada. Allí mostró que, de acuerdo a la teoría de Maxwell-Lorentz, esta emisión de radiación podía ser considerada como un «fluido ficticio» con densidad equivalente a e/c2, donde e es la densidad energética; este resultado es muy similar a la ecuación de Einstein m = E/c^2 ó (E=mc^2), que este derivó en 1905, aunque su significado físico es distinto. Einstein recurrió en artículos sucesivos (1905-1906) a los aspectos formales del artículo de Poincaré para mejorar, con la ayuda de Max Planck, la derivación de la ecuación, y gracias a la nueva interpretación resolvió las paradojas a las que llegó Poincaré. En obras posteriores, Poincaré expuso que la masa no era equivalente a la energía, con lo que reafirmaba su idea inicial de que se trataba de una conveniencia matemática.

Algunos de sus trabajos más importantes incluyen los tres volúmenes de Los nuevos métodos de la mecánica celeste (Les méthodes nouvelles de la mécanique céleste), publicados entre 1892 y 1899, y Lecciones de mecánica celeste (Léçons de mécanique céleste, 1905). También escribió numerosas obras de divulgación científica que alcanzaron una gran popularidad, como Ciencia e hipótesis (1901), Ciencia y método (1908) y El valor de la ciencia (1904).

Anuncios

Publicado el 17 julio, 2015 en Matemáticas. Añade a favoritos el enlace permanente. Deja un comentario.

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s

A %d blogueros les gusta esto: