El comienzo de un sueño. El LHC del CERN, se ponía en marcha.

El 10 de septiembre del año 2008, en Ginebra (Suiza) se produce el primer intento para hacer circular por toda la trayectoria del Gran Colisionador de Hadrones (LHC) los primeros haces de partículas que había sido inyectados previamente el 1 de agosto de 2008.

lhc5La Organización Europea para la Investigación Nuclear (nombre oficial), comúnmente conocida por la sigla CERN (sigla provisional utilizada en 1952, que respondía al nombre en francés Conseil Européen pour la Recherche Nucléaire, es decir, Consejo Europeo para la Investigación Nuclear), es el mayor laboratorio de investigación en física de partículas en el ámbito mundial.

Está situado en la frontera entre Francia y Suiza, entre la comuna de Meyrin (en el Cantón de Ginebra) y la comuna de Saint-Genis-Pouilly (en el departamento de Ain).

Como una instalación internacional, el CERN no está oficialmente ni bajo jurisdicción suiza ni francesa. Los estados miembros contribuyen conjunta y anualmente con 1.000 millones de Francos Suizos CHF (aproximadamente € 664 millones, US$ 1.000 millones).

El centro fue premiado en 2013 con el Premio Príncipe de Asturias de Investigación Científica y Técnica junto a Peter Higgs y François Englert.

Fundado en 1954 por 12 países europeos, el CERN es hoy en día un modelo de colaboración científica internacional y uno de los centros de investigación más importantes en el mundo. Actualmente cuenta con 21 estados miembros, los cuales comparten la financiación y la toma de decisiones en la organización. Aparte de éstos, otros 28 países no miembros participan con científicos de 220 institutos y universidades en proyectos en el CERN utilizando sus instalaciones. De estos países no miembros, ocho estados y organizaciones tienen calidad de observadoras, participando en las reuniones del consejo.

lhc1El 5 de febrero de 1960, en Meyrin, cerca de Ginebra (Suiza), se inauguraba formalmente el mayor acelerador de partículas mundial, un sincrotón de 25 GeV de potencia.

El Gran Colisionador de Hadrones, GCH (en inglés Large Hadron Collider, LHC) es un acelerador y colisionador de partículas ubicado en la Organización Europea para la Investigación Nuclear (CERN, sigla que corresponde a su antiguo nombre en francés: Conseil Européen pour la Recherche Nucléaire); el LHC se encuentra cerca de Ginebra, en la frontera franco-suiza. Fue diseñado para colisionar haces de hadrones, más exactamente de protones, de hasta 7 TeV de energía, siendo su propósito principal examinar la validez y límites del Modelo Estándar, el cual es actualmente el marco teórico de la física de partículas, del que se conoce su ruptura a niveles de energía altos.

Dentro del colisionador dos haces de protones son acelerados en sentidos opuestos hasta alcanzar el 99,99% de la velocidad de la luz, y se los hace chocar entre sí produciendo altísimas energías (aunque a escalas subatómicas) que permitirían simular algunos eventos ocurridos inmediatamente después del big bang.

El LHC es el acelerador de partículas más grande y energético del mundo. Usa el túnel de 27 km de circunferencia creado para el Gran Colisionador de Electrones y Positrones (LEP en inglés) y más de 2000 físicos de 34 países y cientos de universidades y laboratorios han participado en su construcción.

Una vez enfriado hasta su temperatura de funcionamiento, que es de 1,9 K (menos de 2 grados por encima del cero absoluto o −271,15 °C), los primeros haces de partículas fueron inyectados el 1 de agosto de 2008, y el primer intento para hacerlos circular por toda la trayectoria del colisionador se produjo el 10 de septiembre del año 2008. Aunque las primeras colisiones a alta energía en principio estuvieron previstas para el 21 de octubre de 2008, el experimento fue postergado debido a una avería que produjo la fuga del helio líquido que enfría uno de los imanes superconductores.

A fines de 2009 se volvió a poner en marcha, y el 30 de noviembre del 2010 se convirtió en el acelerador de partículas más potente al conseguir energías de 1,18 TeV en sus haces, superando el récord anterior de 0,98 TeV establecido por el Tevatrón estadounidense.

lhc3El 30 de marzo de 2010 las primeras colisiones de protones del LHC alcanzaron una energía de 7 TeV (al chocar dos haces de 3,5 TeV cada uno) lo que significó un nuevo récord para este tipo de ensayos. En 2012 el LHC empezó a funcionar a 4 TeV por haz y en febrero de 2013 se paró durante 20 meses para realizar las mejoras necesarias para la operación a la energía máxima de 7 TeV por haz.  Tras una parada técnica de casi dos años y varios meses de puesta en marcha, el LHC, volvió el 3 de junio del año 2015 a proporcionar colisiones para todos sus experimentos a una energía sin precedentes de 13 teraelectronvoltios (TeV), casi el doble de la energía de colisión de su primer ciclo de funcionamiento.

El 4 de julio de 2012, la Organización Europea para la Investigación Nuclear (CERN) hizo público el descubrimiento de una nueva partícula subatómica que confirma con más de un 99% de probabilidad la existencia del bosón de Higgs, conocido popularmente como la «partícula de Dios», un hallazgo fundamental para explicar por qué existe la materia tal y como la conocemos. ATLAS, uno de los dos experimentos del CERN que busca el bosón de Higgs, ha confirmado la observación de una nueva partícula, con un nivel de confianza estadística de 5 sigma (superior al 99,99994%), en la región de masas de alrededor de 125 GeV. Esta medición implica que la probabilidad de error es de una en tres millones, una cifra que oficialmente es suficiente para dar por confirmado un descubrimiento.La observación de esta partícula es importante para explicar cómo las otras partículas elementales adquieren propiedades como la masa y es un paso significativo en la búsqueda de una teoría de la gran unificación, que pretende relacionar tres de las cuatro fuerzas fundamentales conocidas, quedando fuera de ella únicamente la gravedad y para determinar por qué la gravedad es tan débil comparada con las otras tres fuerzas. Junto al bosón de Higgs también podrían producirse otras nuevas partículas cuya existencia se ha predicho teóricamente, y para las que se ha planificado su búsqueda,como los strangelets, los micro agujeros negros, el monopolo magnético o las partículas supersimétricas.

Anuncios

Publicado el 10 septiembre, 2015 en Física. Añade a favoritos el enlace permanente. Deja un comentario.

Responder

Introduce tus datos o haz clic en un icono para iniciar sesión:

Logo de WordPress.com

Estás comentando usando tu cuenta de WordPress.com. Cerrar sesión / Cambiar )

Imagen de Twitter

Estás comentando usando tu cuenta de Twitter. Cerrar sesión / Cambiar )

Foto de Facebook

Estás comentando usando tu cuenta de Facebook. Cerrar sesión / Cambiar )

Google+ photo

Estás comentando usando tu cuenta de Google+. Cerrar sesión / Cambiar )

Conectando a %s

A %d blogueros les gusta esto: